Peterborough Distribution Inc. 1867 Ashburnham Drive, PO Box 1425 Station Main Peterborough, ON K9J 6Z5

Electric Thermal Storage Units Project

Submitted to the LDC Tomorrow Fund

July 2005

Draft Submission

PETERBOROUGH DISTRIBUTION INC.

1867 Ashburnham Drive, PO Box 4125, Station Main Peterborough ON K9J 6Z5

July 20, 2005

File: O37

John Wong Director of Financial and Business Solutions The MEARIE Group 3700 Steeles Ave. West, Suite 1100 Vaughan, Ontario L4L 8K8

STORAGE HEATER PROJECT

Dear John:

This is a report on our findings with the conversion of baseboard heaters to storage heaters. Storage heaters were installed in late November, 2004. The heaters were installed in one row of electrically heated social housing located at 290 Parkhill East, Peterborough, Ontario. One row consisting of units 12,13,14,15 and 16 were selected for the experiment. These units, like most electrically heated social housing units, have separate meters for the regular electric service and the electric heating service. Time of Use Meters were installed on the heating service for units 12 to 16 on December 2, 2004. Time of Use meters were also installed on the heating service for units 17 and 18, which had regular base board electric heating. These two units were to act as the "control" group to assess the amount of electricity that is used off peak under regular conditions. All of the meters have been read monthly. I have attached a spreadsheet showing the kwh consumption for each of the units involved.

Not knowing what would be considered as off peak hours, for the purpose of our experiment, we installed TOU meters that measured peak as any day, 8 am to 8 pm. Off peak was considered any day 8 pm to 8 am.

For the period up to the end of June, units with storage heaters, a total of 64,781 kwh were used for heating during the off peak period, or 87.8 % of the electricity consumed. For the control group, only 5,196 kwh were used off peak or 36.7% of the electricity consumed.

Steffes, with head office in Dickson, North Dakota, storage heaters were selected. We chose Steffes because we have had favourable experience in dealing with Steffes in the past and the controls used by the Steffes designed heaters provide a great number of control features. In the row of housing that was selected, two storage heaters were placed on the main floor and one storage heater placed on the upper floor for the outside units, where heat loss was the greatest, and in the inside units only one storage heaters were either removed or disconnected. All of the storage heaters in all of the five units were controlled by the use of one controller which employed power line carrier technology to send the control signal to the individual storage heaters. One controller would be able to control any storage heater connected to the secondary side of a distribution transformer.

Under "normal" conditions, a time of use meter would provide a contact to tell the controller when peak and off peak times occurred. As we did not want to expose the experiment to the risk of wrong time signals, in lieu of the meter contact, we used a controller, managed by a radio signal from our SCADA system, to tell the Steffes controller when peak and off peak times were occurring. During the second week of the experiment, the peak and off peak signals became "crossed", so we were in fact taking energy at peak times and using the stored heat during off peak times. Had this been operating as intended, the percentage of off peak energy use would have exceeded 87.8%.

As I understand it, it is common for the local municipality to pay for the heating portion of the energy bill for social housing, while the resident normally pays for the energy bill for other applications. As a result, my observation and information supplied to me by others working for social housing, suggest that many social housing residents, do not exercise conservation of energy with respect to heating. For example, on three different occasions, while visiting the site, I saw windows open on some of the units. During a response to a complaint from one resident, our staff noted that the temperature in the downstairs was 19 Celsius and upstairs, 24 Celsius. The resident made the comment that they had the right to keep the temperature at 30 Celsius if they wanted. Upon installation, the internal controls for the storage heaters were set so that in spite of the thermostat setting, the temperature in the room where the storage heater was located, would not exceed 24 Celsius.

One matter that must be considered when installing storage heaters is the capacity of the transformer supplying the load. I have attached graphs of the primary current, for the week of February 7 to 13, 2005, on the single phase 16 kv distribution transformer used to serve the storage heaters. The transformer supplies not only the 5 units but also 15 other units with baseboard heating. The increased loading at 8 pm is apparent.

Typically the current increases from about 2 amps to 5 amps when the storage heaters begin their charge cycle. Upon designing a storage heater installation, the off peak loading of the distribution transformer would need to be considered. One option that we will employ, as we will be installing more storage heaters in this and other social housing complexes, is the delay of the charge cycle for some of the heaters served by the distribution transformer. Steffes heaters offer this feature. The primary current graphs indicate that most of the heaters will have recharged after about 4 to 5 hours. We expect that we can add a substantial number of storage heaters to the distribution transformer by implementing a 4 hour delay of the charge cycle for about one half of the storage heaters.

Conclusions:

- 1. Storage heaters are very effective in shifting load to off peak times.
- 2. They can provide technology that can be used to ensure some measure of nonabuse of the energy, ie. temperature limiting.
- 3. Transformer loading could be a serious issue if the was a mass effort to convert to storage heaters.
- 4. Social housing residents need to have some method to be accountable for their energy use.
- 5. With the advent of smart meters and time of use rates, the storage heater could be a very effective tool in controlling heating costs, especially where conversion to gas is not a reasonable option.

Yours very truly,

Rolat & Sala

Robert G. Lake P.Eng. President Telephone (705) 748-9301 ext 1280 e-mail rlake@puc.org

F:\ADM\BLAKE\2005\O05\EDAreport2.doc

mber	Readings Dec 21 Off Peak	Dec 21 On Peak	Consumption Consumption Off Peak	Consumption On Peak	Total Total Consumption
4124 4125 4126 4127 4128	1033 میل در لار میلی در لار مج می از لامین 1034 1237 1237	397 318 416 437 437	1033 811 890 840 1237	397 318 429 429 416 416 437	1430 1129 1319 1319 1256 1674
	Jan 24 Off Peak	Jan 24 On Peak	Consumption Off Peak	Consumption On Peak	Total Consumption
34086 34087 >	3924 2803 3274 2945 2945 2945 0 0	780 562 879 946 0 0	2891 1992 2384 2105 3351	383 244 450 449 509	3274 2236 2834 2654 3860
	Feb 22 Off Peak	Feb 22 On Peak	Consumption Off Peak	Consumption On Peak	Total Consumption
4086 4087	7394 5557 6498 6621 8282 749 801	940 725 1345 1279 1282 1338	3470 2754 3224 3276 3694 749 801	- 16.418 163 114 163 114 163 1163 1133 11338 11338	3630 3630 2917 3690 3690 - 1,419 3690 3690 - 2,620 2087
	Mar 22 Off Peak	Mar 22 On Peak	Consumption Off Peak	Consumption On Peak	Total Consumption

3252 2500 3174 2466 4495 1965 2092	Imption	1809 1505 2032 1204 1595 1635	imption	1583 1379 1685 1212 1847 1260 1007	Imption	318 638 526
2.785	Total Const	627	Total Consu	528	Total Consi	
252 135 401 188 1387 1387 1387	On Peak	171 330 970 970 970	On Peak	201 59 97 941 587	On Peak 1	97 229 121 119
14,670	Consumption	5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 Consumption (6.867	onsumption	
3000 2365 2773 2278 2278 578 578 694	Consumption Off Peak (1638 1423 1702 1141 1982 625 375	Consumption Off Peak	1382 1395 1115 1655 603 420	onsumption Off Peak C	409 407 22 407 23
1192 860 1746 1467 1483 2725 2680	pr 22 On Peak (1363 942 1530 1538 3695 3337	lay 25 On Peak	1564 1001 2366 1627 1675 3924 3924	ine 22 On Peak C	1661 1230 2487 1746
10394 7922 9271 8899 12536 1327 1495	Apr 22 Off Peak	12032 9345 10973 10040 14518 1952	May 25 Off Peak M	13414 10665 12368 11155 16173 2555 2290	June 22 Off Peak Ju	13635 11074 12550 11562
C12 C13 C15 C15 D17 D18 C16	April	UNIT C12 C13 C15 C15 D17 D18	May	UNIT C12 C13 C15 D17 D18	June	UNIT C12 C13 C15 C15

umption	Total Cons	Consumption On Peak	Consumption Off Peak	xxx On Peak	xxx Off Peak	<u>></u>
304 291 491	- 431	- 1406 111 150 - 351 281	187 141 210	50 1792 96 4786 00 4205	163(265 250	8

C16 D17 D18 July C12 C12 C13 C15 C13 C15 C15 C15 C15 D17

Average Primary Current (30min)

Feb 7/2005

Feb 7/2005

Average Primary Current (30min)

Feb 8/2005

Feb 8/2005

Average Primary Current (30min)

Feb 9/2005

Feb 11/2005

Feb 12/2005

Average Primary Current (30min)

Feb 13/2005

Feb 13/2005

Average Primary Current (30min)

Feb 14/2005

Average Primary Current (30min)